
Towards a Framework for Multi-Bot Collaboration
Alberto Mimbrero, José A. Parejo, Pablo Fernández, Miguel Romero-Arjona, Sergio Segura

SCORE Lab, I3US Institute, Universidad de Sevilla, Seville, Spain
mimbrero@us.es

Abstract—Software bots are rapidly proliferating, assisting
developers with tasks such as coding, testing, modeling, and
documentation. However, most research has focused on the use
of isolated bots, overlooking a critical aspect to unlock their
full potential: multi-bot collaboration. In this work-in-progress
paper, we introduce the first prototype of Botica, a framework
leveraging asynchronous APIs, messaging, and containerization
to facilitate the development, deployment, and interaction of bots.
A pilot study using Botica for REST API testing illustrates its
effectiveness and the potential advantages of bot collaboration.

Index Terms—software bots, multi-bot collaboration, orches-
tration, containerization, software engineering

I. INTRODUCTION

The rise of software development bots—automated tools
designed to assist developers with routine and repetitive
tasks [1]—has significantly impacted software engineering
practices. Popular bots such as GitHub Copilot [2] for code
completion, Dependabot [3] for dependency management, and
First Timers [4] for supporting new contributors to open-
source projects exemplify how these tools streamline devel-
opment workflows, supporting productivity. Many of these
bots provide natural language interfaces, often referred to as
chatbots, which integrate seamlessly into popular collaboration
platforms such as Slack, MS Teams, and Discord. At the time
of writing, the “Developer Tools” category in the Slack app
repository lists over 500 apps (chatbots) supporting tasks such
as end-to-end testing [5], code analysis [6] and vulnerability
scanning [7].

Despite substantial advancements in software bot develop-
ment, progress has primarily focused on isolated bots that
address specific software engineering tasks, e.g., [8]–[10].
While this approach promotes cohesion, maintainability, and
modularity, it constrains the utility of bots in tasks that require
insights and data from different activities. Hence, the need
for systems that facilitate the coordination and collaboration
of bots is recognized as a challenge within the software
engineering community [11]. For instance, in testing sce-
narios, bots responsible for test case generation, execution,
and reporting would ideally communicate and collaborate to
achieve optimal results (see running example). This demand
for collaboration has driven the emergence of agentic systems,
such as AutoGen [12] or CrewAI [13], which facilitate the
integration of AI-enabled agents working together to tackle
complex, high-level tasks, often leveraging large language
models. However, these systems primarily target artificial
intelligence (AI) applications and are not specifically designed
to support the integration of general-purpose software bots.

In this work-in-progress paper, we introduce the first pro-
totype of Botica, a framework designed to enable and opti-
mize multi-bot collaboration. Leveraging asynchronous APIs,
a messaging layer, and containerization, Botica allows for
seamless interactions among bots, facilitating the development
and deployment of a collaborative bot environment. We present
the result of a pilot study using Botica in the context of
REST API testing, showing the potential benefits of bot
collaboration.

The remainder of the paper is structured as follows: in
Section II we present a running example in the context
of RESTful API testing. Next, Section III details Botica ’s
architecture. Section IV examines the pilot study evaluation
and findings. Section V discusses related work, and Section
VI explores the broader implications of enabling multi-bot
collaboration in software engineering.

II. RUNNING EXAMPLE

Figure 1 shows a scenario of the use of bots for the auto-
mated testing of REST APIs, partially inspired by the work of
Martin-Lopez et al. [14]. In their work, the authors launched
a total of 228 bot instances that automatically generated and
executed test cases in 13 industrial APIs for 15 days non-
stop, resulting in over one million test cases. As a result, more
than 250 bugs were identified, 65 of them confirmed, in the
APIs of Amadeus, Foursquare, Yelp, and YouTube. Bots were
implemented using the RESTest framework [15] as well as
ad-hoc Python and shell scripts. The bots launched included,
among others, the following types of bots:

• Generator bots. They are responsible for generating test
cases for a given API operation, combining different
test data (e.g., data dictionaries) and test case generation
techniques (e.g., constraint-based testing).

• Executor bots. They run the test cases provided by
the generator bots against the specified APIs at pre-
configured time intervals.

• Reporter bots. They generate test reports and coverage
reports based on the execution results.

Figure 1 also shows two other types of bots not used in [14],
but that would make sense in this scenario, namely:

• Oracle generator bots. These bots, inspired by the work
of Alonso et al. [16], are responsible for inferring in-
variants (i.e., potential test oracles) by analyzing the
API specification, previous API requests, and their cor-
responding responses.

• Chat bot. This is in charge of keeping developers in the
loop, for example, by confirming whether the observed



invariants are actual test oracles or not. Confirmed oracles
could then be added as new assertions to future test cases.

Fig. 1. Running example.

This example scenario illustrates several key challenges.
First, synchronizing bots—often developed in different pro-
gramming languages—is critical to maintaining an efficient
workflow across test case generation, execution, reporting, and
oracle detection. For instance, in [14], the authors chose to
integrate test case generation and execution within a single
bot type (referred to as a test bot) because separating and
coordinating these tasks proved difficult. Another challenge
lies in bot management, which includes tasks such as starting
and stopping bots at the correct times, ensuring safe shutdowns
without abruptly terminating processes, checking bots statuses,
and properly cleaning up resources—processes that were par-
tially manual or could not be done in [14]. Additionally, redun-
dant tasks present a significant issue; isolated bots, unaware of
their operating environment, may repeatedly perform the same
task without adapting their behaviour. In [14], for instance,
bots continued generating and executing test cases despite
encountering API quota limit errors or API availability issues.

Martin-Lopez et al. [14] partially mitigated these limitations
by using ad-hoc scripts, which manually dealt with back-
ground processes to manage the deployment of bots. However,
while effective, their approach was difficult to generalize and
presented severe scalability limitations, as well as requiring
significant manual work. These challenges motivate our work.

III. BOTICA

In this section, we present Botica, a framework for multi-bot
collaboration. Below, we present an overview of its architec-
ture and design.

A. Architecture

Figure 2 shows the architecture of Botica. Each bot instance
is deployed inside a container and shares the environment
(e.g., network) with the other bots, as well as the internal
message broker. There may be multiple instances of each bot
type. The message broker facilitates communication between

bots and connects them to the Botica Director, the central
management program for the environment. This program runs
on the host machine and is responsible for deploying the
message broker and bots inside the containerization software,
as well as configuring them within the environment. It also
manages bots through a special set of internal control messages
that enable orchestration of the environment and constitute the
Botica protocol, such as checking bot statuses or requesting
shutdowns. For example, a bot can register a shutdown hook,
so it can postpone a shutdown from the Director if it is still
running a task or writing into the disk.

Fig. 2. Botica architecture.

B. Components

The tool is composed of the following main components:
Internal message broker. It facilitates communication both

among the bots and between the bots and the Director. It
is deployed and managed internally by the Director as a
container within the same network as the bots. Bots can
subscribe to orders published by other bots, which involves
three main concepts: key, order and message—all specified
when subscribing and publishing. The key is a broker-level
property that determines which bots will receive the order and
how they receive it. Each bot type subscribes to individual keys
and selects a delivery strategy for each: either distributed (each
new order is delivered to a single available instance of the
bot type, enabling load balancing) or broadcast (new orders
are delivered to every instance of the bot type). The order
is a bot-level property used to distinguish between different
actions. Finally, the message is the actual data sent between
bots. This three-level architecture supports the creation of in-
teraction protocols between bots, enabling the implementation
of various collaboration and coordination patterns.

Director. It is responsible for deploying and managing
both the message broker and the bots. It first reads the
environment configuration file to gather the necessary queues
and other messaging configurations from the bots. Then, using
the container software API and daemon, it creates and starts
the message broker container with the custom configuration



for the environment. Once the message broker is ready, a
connection is established and the bot containers are created
and started. The Botica Director also manages bots through
special control messages—referred to as packets—which are
treated and implemented differently from standard orders,
such as heartbeat checks or shutdown requests. The Botica
Director is provided as an interactive CLI program, offering
management capabilities for the user, such as information
retrieval or shutdown commands.

Bots. Bots automatically establish a connection with the
message broker on startup and integrate with the environment,
by publishing orders and subscribing to orders from other bots,
or scheduling proactive actions—code that runs independently
without needing an external trigger, often at regular intervals.
They are connected to the Director and listen and reply to
control messages, such as the heartbeat checks. By default,
a shared volume is provided to enable internal file exchange
among bots, though they can also be configured to mount files
and directories from the host file system.

C. Tooling

Botica has been developed across three GitHub repositories,
including the main program, Botica Director, and two libraries
for bot development [17]–[19]. Botica Director, written in
Java 11, comprises 3.5K lines of code (LoC). Libraries are
available for Java (530 LoC) and Node (+700 LoC). Both
libraries facilitate the development of bots that can be easily
integrated into the platform, including templates to streamline
project setup and build processes.

The entire environment is set up through a configuration
file, where the different bots are declared (see sample extract
in Listing 1). This file specifies their container configuration
(e.g., the container image in line 3, files/directories to mount
on the container file system in lines 4-6), the keys and
delivery strategies of the orders to subscribe to (lines 30-
31), and the bot instances (lines 15-20), among others. There
may be multiple instances of each bot type, each with a
unique identifier (key in line 15) and specific environment
variables (lines 16-17). A template repository is also provided
to facilitate the environment creation.

1 bots:
2 generator:
3 image: "botica -bot -restest -generator"
4 mount:
5 - source: "./src"
6 target: "/app/src"
7 - ...
8 publish:
9 key: "test_execution"

10 order: "execute_test_cases"
11 lifecycle:
12 type: proactive
13 period: 60
14 instances:
15 generator -omdb -r-cbt -custom:
16 environment:
17 - USER_CONFIG_PATH =...
18 generator -omdb -r-ft:
19 environment:
20 - USER_CONFIG_PATH =...
21 ...

22
23 executor:
24 image: "botica -bot -restest -executor"
25 mount: { ... }
26 publish:
27 key: "test_reporting"
28 order: "generate_test_report"
29 subscribe:
30 - key: "test_execution"
31 strategy: distributed
32 lifecycle:
33 type: reactive
34 order: "execute_test_cases"
35 instances:
36 executor -1: { }
37 ...
38
39 reporter:
40 image: "botica -bot -restest -reporter"
41 mount: { ... }
42 subscribe:
43 - key: "test_reporting"
44 strategy: distributed
45 lifecycle:
46 type: reactive
47 order: "generate_test_report"
48 instances:
49 reporter -1: { }
50 ...

Listing 1. Extract of an example environment configuration file.

IV. PRELIMINARY EVALUATION

As a pilot study, we implemented an instance of the running
example using Botica. The final architecture consisted of
21 generator bots, 9 executor bots, and 5 reporter bots, all
implemented using RESTest [14] and integrated into Botica
through its Java libraries. These bots were configured to
autonomously generate and execute test cases on the web
APIs of Marvel (character endpoints) [20], Stripe (product
endpoints) [21], OMDb (search endpoint) [22], and Rest-
countries (all endpoints) [23]—33 API endpoints in total.
Over a 24-hour period, test cases were generated at intervals
between 100 and 345 seconds. After each generation batch,
executors were triggered by notification messages to initiate
test execution. Reporter bots subsequently generated results
dashboards upon receiving messages from the executors. The
implementation took 401 LoC, with 202 lines dedicated to the
environment configuration file (see excerpt in Listing 1) and
199 lines written in Java, excluding RESTest-specific code.
The messages exchanged through Botica were collected for
later analysis. Source code and data are available at [24].

Table I summarizes the key metrics and outcomes of our
study. Overall, 558,768 test cases were generated across 9,466
batches and successfully executed, resulting in the exchange
of over 18.9K messages among the bots. Note that not all
generated test cases were fully executed, as some were still
being processed or remained in queue when the bots were
stopped. This collaborative approach helped address, either
fully or partially, the challenges outlined in Section II. Bot
synchronization allowed the creation of a fully automatic
workflow, with test generation and execution separated into
two different bots. Generated test batches were executed



efficiently, leveraging load balancing among executor bots. All
bots were automatically started and stopped without incident.
To streamline data handling, generator and executor bots
exchanged files via the shared volume provided, while output
files were stored in a directory mounted from the host OS file
system. These preliminary results show the potential of Botica
in supporting effective development, deployment, and collab-
oration of multi-bot applications for software engineering.

TABLE I
EXPERIMENTAL DATA

Metric Value

Number of APIs 4
Number of endpoints 33

Marvel 6
Stripe 5
OMDb 1
Restcountries 21

Number of bots 35
Generators 21
Executors 9
Reporters 5

Number of messages (orders) 18,917
Disk usage 46 GiB
Number of generated tests 558,768
Number of executed tests 555,717

Passed 432,775
Failed 122,589
Broken 353

V. RELATED WORK

Current research largely focuses on isolated bots and spe-
cific software engineering tasks, such as recommending the
most suited developers for branch merges [8], intelligent
software refactoring [9], or proposing fixes for static analysis
warnings [10]. While human-machine interaction has been
extensively studied [25]–[29], the field of bot-to-bot inter-
action remains largely underexplored [11] and it has only
been addressed in specific domains such as the Wikipedia
bot ecosystem [30] or the botnets threats in security [31].
Similarly, different tools have been developed to facilitate the
development and deployment of individual bots (e.g., [32],
[33]), yet they lack mechanisms to support collaborative bot
interaction—the goal of Botica.

Frameworks such as Atomic Agents [34], AutoGen [12]
or CrewAI [13] facilitate the creation of autonomous multi-
agent AI systems. However, these frameworks are dependent
on LLM-based agents and are not designed for other purposes.
By contrast, Botica is a general-purpose tool for bot deploy-
ment, lifecycle management, and coordination. It provides
asynchronous messaging capabilities to create interaction pro-
tocols, supporting a variety of collaboration and coordination
patterns, including load balancing and information broadcast-
ing.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents Botica, a work-in-progress framework
for multi-bot collaboration in software development environ-
ments. Botica leverages containerization and asynchronous

communications to facilitate interaction and coordination
among bots. The framework allows users to create a range
of customizable bots, providing a flexible infrastructure that
has proven useful in automating REST API testing tasks.

In future work, we aim to expand Botica with a broader
set of features. Planned enhancements include advanced man-
agement capabilities, such as dynamically scaling the number
of bot instances based on workload demands. We are also
developing a Complex Event Processing (CEP) module that
will enable bots to adjust their behaviours based on patterns
detected in message flows. For instance, this could allow
generator bots to pause for a specified time upon detecting
quota limits or API availability issues, or trigger warnings via
a chatbot if an unusual number of test failures is observed.
Finally, we intend to conduct large-scale evaluations across
various application scenarios, incorporating diverse bot types
(including AI-driven bots) and collaboration patterns.

ACKNOWLEDGMENTS

This work is a result of grant PID2021-126227NB-C22,
funded by MCIN/AEI /10.13039/501100011033/ERDF/EU;
and grant TED2021-131023B-C21, funded by
MCIN/AEI/10.13039/501100011033 and by European
Union “NextGenerationEU/PRTR”.

REFERENCES

[1] L. Erlenhov, F. G. d. O. Neto, and P. Leitner, “An empirical study
of bots in software development: characteristics and challenges from
a practitioner’s perspective,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
445–455. [Online]. Available: https://doi.org/10.1145/3368089.3409680

[2] “GitHub Copilot,” https://github.com/features/copilot, accessed Novem-
ber 2024.

[3] “GitHub Dependabot,” https://github.com/dependabot, accessed Novem-
ber 2024.

[4] “First Timers,” https://github.com/first-timers, accessed November 2024.
[5] “Cypress,” https://slack.com/marketplace/A010PD913CG, accessed

November 2024.
[6] “CodeFactor,” https://slack.com/marketplace/A2U8M78RH, accessed

November 2024.
[7] “Intruder,” https://slack.com/marketplace/AB2HWP5KL, accessed

November 2024.
[8] C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “Tipmerge:

recommending experts for integrating changes across branches,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2016. New York,
NY, USA: Association for Computing Machinery, 2016, p. 523–534.
[Online]. Available: https://doi.org/10.1145/2950290.2950339

[9] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, “RefBot: Intel-
ligent Software Refactoring Bot,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2019, pp. 823–
834.

[10] D. Şerban, B. Golsteijn, R. Holdorp, and A. Serebrenik, “SAW-BOT:
Proposing Fixes for Static Analysis Warnings with GitHub Suggestions,”
in Proceedings - 2021 IEEE/ACM 3rd International Workshop on Bots
in Software Engineering, BotSE 2021. United States: IEEE Computer
Society, Jun. 2021, pp. 26–30.

[11] J. Cabot, “The Present and Future of Bots in Software Engineering,”
https://livablesoftware.com/present-future-bots-software-engineering/,
accessed November 2024.



[12] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang,
X. Zhang, S. Zhang, J. Liu, A. H. Awadallah, R. W. White, D. Burger,
and C. Wang, “AutoGen: Enabling Next-Gen LLM Applications via
Multi-Agent Conversations,” in Conference on Language Modeling,
2024. [Online]. Available: https://aka.ms/autogen-pdf

[13] “CrewAI,” https://www.crewai.com, accessed November 2024.
[14] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Online testing of

restful apis: Promises and challenges,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 408–420.

[15] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: automated
black-box testing of RESTful web APIs,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 682–685. [Online]. Available:
https://doi.org/10.1145/3460319.3469082

[16] J. C. Alonso, S. Segura, and A. Ruiz-Cortés, “Agora: Automated
generation of test oracles for rest apis,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1018–1030. [Online]. Available:
https://doi.org/10.1145/3597926.3598114

[17] “Botica repository on GitHub,” https://github.com/isa-group/botica, ac-
cessed November 2024.

[18] “Botica Java library repository on GitHub,” https://github.com/isa-
group/botica-lib-java, accessed November 2024.

[19] “Botica Node library repository on GitHub,” https://github.com/isa-
group/botica-lib-node, accessed November 2024.

[20] “Marvel API,” https://developer.marvel.com/docs, accessed November
2024.

[21] “Stripe Products API,” https://docs.stripe.com/api/products, accessed
November 2024.

[22] “OMDb API,” https://www.omdbapi.com/, accessed November 2024.
[23] “REST Countries API,” https://restcountries.com/, accessed November

2024.
[24] “Supplementary material,” https://github.com/isa-group/botica-

infrastructure-restest/tree/botse-paper-evaluation, accessed November
2024.

[25] J. Zamora, “I’m sorry, dave, i’m afraid i can’t do that: Chatbot
perception and expectations,” in Proceedings of the 5th International
Conference on Human Agent Interaction, ser. HAI ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 253–260.
[Online]. Available: https://doi.org/10.1145/3125739.3125766

[26] D. Liu, M. J. Smith, and K. Veeramachaneni, “Understanding user-bot
interactions for small-scale automation in open-source development,”
in Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems, ser. CHI EA ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–8. [Online].
Available: https://doi.org/10.1145/3334480.3382998

[27] A. P. Chaves and M. A. Gerosa, “How should my chatbot
interact? a survey on social characteristics in human–chatbot
interaction design,” International Journal of Human–Computer
Interaction, vol. 37, no. 8, pp. 729–758, 2021. [Online]. Available:
https://doi.org/10.1080/10447318.2020.1841438

[28] A. P. Chaves, J. Egbert, T. Hocking, E. Doerry, and M. A. Gerosa,
“Chatbots language design: The influence of language variation
on user experience with tourist assistant chatbots,” ACM Trans.
Comput.-Hum. Interact., vol. 29, no. 2, Jan. 2022. [Online]. Available:
https://doi.org/10.1145/3487193

[29] L. A. Tran, B. Hensen, R. Klamma, and S. Chantaraskul, “Privacy and
security in mixed reality learning environments by input and user/bot
interaction protection,” in Proceedings of the 2022 4th Asia Pacific
Information Technology Conference, ser. APIT ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 63–71. [Online].
Available: https://doi.org/10.1145/3512353.3512363

[30] R. S. Geiger and A. Halfaker, “Operationalizing conflict and
cooperation between automated software agents in wikipedia: A
replication and expansion of ’even good bots fight’,” Proc. ACM
Hum.-Comput. Interact., vol. 1, no. CSCW, Dec. 2017. [Online].
Available: https://doi.org/10.1145/3134684

[31] J. M. F. M. Augusto Santos, Michele Nogueira, “A
stochastic adaptive model to explore mobile botnet dynamics,”
IEEE Communications Society, 2016. [Online]. Available:
https://doi.org/10.1109/lcomm.2016.2637367

[32] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: A Multimodal
Low-Code Chatbot Development Framework,” IEEE Access, vol. 8, pp.
15 332–15 346, 2020.

[33] A. Ait, J. L. C. Izquierdo, and J. Cabot, “A tool for the definition
and deployment of platform-independent bots on open source projects,”
Proceedings of the 16th ACM SIGPLAN International Conference on
Software Language Engineering, 2023.

[34] “Atomic Agents,” https://gjmcn.github.io/atomic-agents, accessed
November 2024.


